Overview

Engineering Physics Undergraduate Program

The engineering physics program is designed for undergraduates with an interest in both science and engineering. The program is focused on those students who wish to work in areas of rapid technological change, where a good background in the underlying science is an important ingredient to success in their careers. The curriculum includes classical and modern physics, mathematics, and their applications to one or more areas of engineering. The student learns the physical science and engineering principles underlying modern technology. Four design concentrations are offered:

  • Aerospace systems
  • Chemical systems
  • Digital electronic systems
  • Electromechanical control systems

Each option incorporates a significant design component and provides a strong base in one or more engineering disciplines.

For programs in physics, see Physics and Astronomy in the College of Liberal Arts and Sciences section of the online catalog.

Educational Objectives

Engineering physics graduates will be capable of

  • Completing or successfully progressing toward completion of an advanced degree in graduate or professional school,
  • Using their analytical, problem-solving, and communications skills to conduct research or contribute to technology development projects, individually or as a team member,
  • Using their background knowledge in physics and engineering fundamentals as a foundation for developing new knowledge and experience in their chosen disciplines.

Engineering Physics Undergraduate Program

The engineering physics program is designed for undergraduates with an interest in both science and engineering. The program is focused on those students who wish to work in areas of rapid technological change, where a good background in the underlying science is an important ingredient to success in their careers. The curriculum includes classical and modern physics, mathematics, and their applications to one or more areas of engineering. The student learns the physical science and engineering principles underlying modern technology. Four design concentrations are offered:

  • Aerospace systems
  • Chemical systems
  • Digital electronic systems
  • Electromechanical control systems

Each option incorporates a significant design component and provides a strong base in one or more engineering disciplines.

For programs in physics, see Physics and Astronomy in the College of Liberal Arts and Sciences section of the online catalog.

Educational Objectives

Engineering physics graduates will be capable of

  • Completing or successfully progressing toward completion of an advanced degree in graduate or professional school,
  • Using their analytical, problem-solving, and communications skills to conduct research or contribute to technology development projects, individually or as a team member,
  • Using their background knowledge in physics and engineering fundamentals as a foundation for developing new knowledge and experience in their chosen disciplines.

Contact Info

Engineering Physics

Malott Hall
1251 Wescoe Hall Drive, Room 1082
Lawrence, KS 66045-7572
785-864-4626
http://www.physics.ku.edu/
Stephen J. Sanders, Chair, Department of Physics and Astronomy
785-864-4626
Steven A. Hawley, Director, Engineering Physics
785-864-5098
Why KU
  • One of 34 public institutions in the prestigious Association of American Universities
  • 2nd in the nation for prestigious faculty Fulbright awards
  • 26 Rhodes scholars
  • Nearly $290 million in financial aid annually
  • One of 9 public universities with outstanding study abroad programs. U.S. News and World Report